QTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L.

نویسندگان

  • Xuhui Li
  • Guihua Wang
  • Junjie Fu
  • Li Li
  • Guangyao Jia
  • Lisha Ren
  • Thomas Lubberstedt
  • Guoying Wang
  • Jianhua Wang
  • Riliang Gu
چکیده

Improving seed vigor in response to cold stress is an important breeding objective in maize that allows early sowing. Using two cold tolerant inbred lines 220 and P9-10 and two susceptible lines Y1518 and PH4CV, three connected F2:3 populations were generated for detecting quantitative trait locus (QTL) related to seed low-temperature germination ability. At 10°C, two germination traits (emergence rate and germination index) were collected from a sand bed and three seedling traits (seedling root length, shoot length, and total length) were extracted from paper rolls. Significant correlations were found among all traits in all populations. Via single-population analysis, 43 QTL were detected with explained phenotypic variance of 0.62%∼39.44%. Seventeen QTL explained more than 10% phenotypic variance; of them sixteen (94.12%) inherited favorable alleles from the tolerant lines. After constructing a consensus map, three meta-QTL (mQTL) were identified to include at least two initial QTL from different populations. mQTL1-1 included seven initial QTL for both germination and seedling traits; with three explaining more than 30% phenotypic variance. mQTL2-1 and mQTL9-1 covered two to three initial QTL. The favorable alleles of the QTL within these three mQTL regions were all inherited from the tolerant line 220 and P9-10. These results provided a basis for cloning of genes underlying the mQTL regions to uncover the molecular mechanisms of maize cold tolerance during germination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

متن کامل

QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population

Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL ana...

متن کامل

The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (Zea mays L.)

Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moistur...

متن کامل

Combined Linkage and Association Mapping Reveals QTL and Candidate Genes for Plant and Ear Height in Maize

Plant height (PH) and ear height (EH) are two very important agronomic traits related to the population density and lodging in maize. In order to better understand of the genetic basis of nature variation in PH and EH, two bi-parental populations and one genome-wide association study (GWAS) population were used to map quantitative trait loci (QTL) for both traits. Phenotypic data analysis revea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018